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ABSTRACT 

3f!=4ca, 
This report  descr ibes  a thermodynamic analysis,  numerical  

analysis and FORTRAN computer program which analyzes the periodic 

heat flow through a section of a body into the inter ior  of the body. The 

section is tr iangular in shape and one side is exposed to  the lunar environ- 

ment  while the other side is exposed to  the body's inter ior  environment. 

It is assumed that this resu l t s  in a constant heat t ransfer  coefficient. A 

profile through the section consists of a thin outer me ta l  skin, any thick- 

ness  of high grade insulation, and a thin inner metal skin. The computer 

p rogram is listed in Brown Engineering P r o g r a m  L ib ra ry  as P r o g r a m  

NO. SP-149. 

Approved 

Director  of Research  
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LIST OF SYMBOLS 

Mathematic a1 FORTRAN Definition 

A A Area of triangle 

A ABAR Magnitude of vector N,, Ny, N, 
- 

a Time s teps  f rom start, to, to  any t ime,  t 

Time s teps  f rom start to  t ime t l  

Time s teps  f rom start to t ime t z  

CD 

C P  

C Colongitude of sum a t  00. 00 G. M. T. in  
degrees 

C Specific heat of insulation 

Energy incident on unit a r e a  of outer 
surface of triangle a t  t ime point, j 

EMIS Emissive power of lunar surface at t ime 
point, j 

e 

- 
f 

ElOTl Emissivity of outer surface of tr iangle at 
temperature ,  TI, j 

FBAR Phase fraction (var ies  from 0 to  1) 

G Solar constant on lunar surface G 

H HTC Heat t ransfer  coefficient f r o m  insulation 
t o  cabin 

h H 

K 

KBAR 

LKH 

L 

XLN 

Magnitude of 6 steps 

k Magnitude o f t  steps 
- 
k Thermal conductivity of insulation 

Computational parameter  L 

1 Thickness of insulation 

x direction cosine of triangle outward 
normal 

iv  
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m 

mn 

ms,  j 

Nx 
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NZ 
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n 

nn 

ns, j 

P 

qA 

~ ~ 

LIST OF SYMBOLS (Continued) 

FORTRAN 

X L S  

M1 

M 

XMN 

XMS 

XNX 
XNY I 
XNZ 

N1 

N 

XNN 

XNS 

QQ 

QDOT 

Definition 

x direction cosine of a line f rom the 
triangle to the s u n  at t ime point, j 

Number of points defining insulation in  
.$ direction (M1 = m t 1 )  

Number of space intervals  through 
insulation (in direction) 

y direction cosine of tr iangle outward 
normal 

y direction cosine of a line f rom the 
triangle to  the sun at time point, j 

x, y, z components of the vector product 
which defines the tr iangle outward normal  

Number of points defining a lunation 
(N1 = n t 1 )  

Number of time intervals  in one lunation 

z direction cosine of tr iangle outward 
normal  

z direction cosine of a line f r o m  the 
triangle to the sun at time point, j 

Any period f r o m  the s t a r t  of a lunation 

Net heat flux passing through triangle 
into cabin f rom t imes  t l  to  t2 

Heat flux passing into cabin over tr iangular 
area,  A, at t ime point, j 

Heat flux passing into tr iangle pe r  unit 
a r ea  a t  t ime,  j 

Net heat flow into cabin, per  unit a rea ,  
from t imes  t l  to tz 
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LIST OF SYMBOLS (Continued) 

Mathematical 

r 

TC 

Ti, j 

Tm, j 

TM1, j 

Tp=0 

t 

t0 

"m 
"S 

P 

FORTRAN Definition 

RMTS Reflectivity of lunar surface to so l a r  
radiation 

TC Cabin temperature  

T(I, J) Temperature in insulation a t  distance 
6 = ( i -1)  h and t ime ( j - 1 )  k af ter  s t a r t  of 
lunation 

TM Lunar surface temperature  a t  t ime point, j 

Cabin wall  temperature  (i. e .  , space point 
M1) at t ime point, j 

Triangle outer surface temperature  (i. e .  , 
space point 1) at t ime point, j 

TBET Lunar equatorial  temperature  

TIME Time, counted f r o m  00. 00 G. M. T. 

Period f rom 00. 00 G. M. T. to  start of 
lunation 

Arbi t ra ry  t imes ,  counted f rom 00. 00 G. M. T. 

MOLAB coordinates,  defined in Figure 2 

Coordinates defining the tr iangle.  Apexes XXI,  YY1, zz1 
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Y GAM Thermal diffusivity of insulation (defined 
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INTRODUCTION 

As a resul t  of the Apollo project, a need existed for a number of 

brief mathematical  analyses.  

various aspects  of design problems as they a rose .  

a rapid means of checking one thermodynamic aspect  of the Apollo project, 

namely, the heat fluxes passing into and out of a section of a body situated 

in the lunar environment. 

These were to  be used to  check quickly 

This repor t  provides 

The section which was analyzed was a t r iangular  shape and, moving 

along a line perpendicular to the outer surface,  was assumed to  be com- 

pr i sed  of the following elements:  

high grade insulation; and a thin metal  inner skin backing onto a constant 

tempera ture  heat source o r  sink. 

a thin metal  outer skin; any thickness of 

This particular shape was chosen because it i s  a relatively easy  

mat te r  to split any body surface into triangular sections,  and the elements 

of which it is assumed to  be comprised a r e  fa i r ly  representat ive of cu r -  

ren t  practice.  

The repor t  consists of a thermodynamic analysis,  a numerical  

analysis and a computer program written f o r  an  IBM 7094 computer which, 

subject t o  the rest r ic t ions outlined later,  will accurately calculate the 

heat flux into the heat source  o r  sink and the temperature  distribution 

through the insulation. 

1 



ANALYSIS 

Simplifications 1 

1. 

2. 

3.  

4. 

5. 

6. 

7. 

8. 

9 .  

The body surface i s  amenable to representation by t r iangles ,  

Each triangle can "see" no other par t  of the vehicle. 

Conduction of heat between triangles is neglected2. 

Conduction of heat through the insulation has  a t r ivial  effect 
on an  outer surface heat balance. 

Periodic heat conduction through the insulation in  one direction 
only is considered 3 . 

The lunar surface is  assumed to  be an isothermal  flat plane of 
infinite extent. 

A single reflection of solar heat f rom the lunar surface is the 
only reflection of significance. 

The insulation has  a constant thermal  conductivity. 

A spherical  moon is assumed to  revolve around the sun in a 
c i rcu lar  orbit, coincident with the ecliptic, and to uniformly 
rotate with a period T equal to  a mean synodic month in  a 
counterclockwise direction when viewed f r o m  the north. 

Calculation of Triangle Outer Surface Temperature,  T 1, j 

4 Simplifications 3 and 4 indicate that 

where 

El, j - energy incident per  unit a r e a  of triangle outer surface a t  

tim'e, j 

e - emissivity of triangle at  i ts  own temperature ,  T1,j 

u - Stefan-Boltzmann constant, and 

- temperature  of triangle outer surface.  TI, j 

2 



In the light of simplifications 2 and 7 the energy incident per  unit 

a r e a  of the tr iangle,  El, j comes f r o m  three sources:  d i rec t  solar  flux 

( represented  by a constant so la r  constant, G = 442 Btu/ftz h r ,  s ee  simpli-  

fication 8) ;  so la r  flux reflected once from the lunar surface;  and d i rec t  

lunar sur face  radiation (see simplification 6).  Thus, i f  

- emissive power of lunar surface at t ime "j" Em, j 

G - solar  constant on lunar sur face  

r - reflectivity of lunar surface to solar  radiation 

% -  l I z "  direction cosine of tr iangle outward normal  

n s , j  
- l I z "  direction cosine of so la r  direction a t  t ime f l j ' '  

am - absorptivity of triangle to lunar radiation 

as - absorptivity of triangle to  solar radiation 

E 1, j - angle between triangle outward normal  and solar  direction 

at t ime "j", then 

where ( 

on the point X, p but not on the triangle), and ( )i = ( )ii = 0 when ns 

(i. e . ,  when the sun does not shine on the point A ,  p). Thus, substituting 

Equation 2 into Equation 1 and rearranging, the outer surface temperature  

of the t r iangle  (which is the outer surface temperature  of the insulation, i. e . ,  

point 1 )  a t  t ime I1j1' is  given by 

Ii = 0 when ns, j h 0 and cos E 1, j < 0 (i. e . ,  when the sun shines 

< 0 , j  

where ( 

ns, j < 0. 

)i = 0 when ns, j 2 0 and cos E 1, j < 0 and ( li = ( )ii = 0 when 

3 



. Evaluation of Components of Unit Outward Normal 

To evaluate the direction cosines of the outward normal  f rom the 

tr iangle,  it is first necessary  to coordinate the triangle. 

numbering the apexes 1, 2,  and 3 i n  a COUNTERCLOCKWISE direction 

when the tr iangle is viewed f rom OUTSIDE the body. Thus, the coordi- 

nates of the apexes in  the coordinates x, y, and z shown in Figure 1 a r e  

This is done by 

A vector product of the vectors describing s ides  1-2 and 1-3  

resu l t s  in  the components of a normal 

giving a resultant 

- 1 

A = [(NX)' + (Ny)2 + (N,)'IZ 

Note that the area of triangle, A, is given by 

A A = -  
2 

Hence, the components of a unit normal (i. e . ,  the direction cosines)  in  

the x, y and z direction respectively, a r e  given by 

(7) 

4 



. 
c 

Lunar North Pole 

MOLAB Zenith, 

Figure 1.  Orientation of Body Coordinates 
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Evaluation of Time Dependent Terms;  ns, j ,  €1, j ,  Em, j 
L 

The longitude of the s u m  X,, j at any time t in  selenocentric 

coordinates is c lear ly  given by 

t A s ,  j - A, - - - 
T 

where Xo is the longitude of the sum a t  t = 0. 

counted f r o m  00. 00 G. M. T . ,  then Xo is easi ly  determined f r o m  Reference 5 

as 

However, i f  the t ime t is 

A, = 90 - C (13) 

where C = colongitude of the sun i n  selenocentric coordinates (tabulated i n  

Reference 5). Thus, cognizance of Equations 12 and 13, together with the 

coordinate rotations shown in Figure 1 ,  suggests the so l a r  direction 

cosines I s, j ,  m, , j ,  ns, j in the x, y, z directions respectively may be  

represented by 

P,, = - (cos 6 sin AXs,j t sin p s in  8 cos AXs .) 

m s , j  = sin 8 s in  AXs , j  - s i n  /3 cos 8 cos AAs,j 

(14) 

(15)  

J J  

where 

AXs, j = X - As, j . (17)  

j, The cosine of the angle between the sun and the unit normal,  cos E 1, 

is direct ly  found f rom the sca l a r  product of the unit sun vector and unit 

normal ,  thus 

Frequently, the lunar surface temperature  his tory is represented 

by a collection of points formed by the intersection of equatorial  tempera-  

t u re  against  instantaneous phase fraction, f = AXS,,/2m. (The points 

6 



recommended a r e  shown in Appendix C.) The conversion f rom latitude 

p = 0 to any latitude is accomplished by 

(19) T m , j  - - Tp,o  COS^/^ p . 
(Equation 19 is sufficiently accurate  for most  purposes up to  a latitude 

of about 45". ) 

As the lunar surface ac ts  very much like a black body, the 

emissive power E,, j is simply given by 

7 



CALCULATION 

The object 

through a triangle 

OF HEAT FLUX THROUGH THE INSULATION3 

of the analysis is to determine the heat flux passing 

into the cabin. Thus we must  evaluate 

t2 tZ 

qA = 1 4A, j dt = A hu, j dt (21 1 
t l  t l  

whe r e  

However, a s  these expressions a r e  the conclusions of the analysis below, 

more  detailed considerations will be left until la ter .  

The equation which describes the tempera tures  through the 

insulation is Four ie r ' s  Heat Conduction equation for one-dimension, which 

is 

where y, the thermal  diffusivity, is given by </pc.  

Boundary Conditions 

The exterior (i. e . ,  triangle), 5 = 0 

T = T(t) 

the inter ior  (i. e . ,  cab) ,  = I 

t ime bounds (cyclical  a r r a y )  

T ( S , t )  = T ( 5 ,  t - t  T )  . 



Nume r i c  a1 Pr oc edu r e 

d + 
7 One Cycle 

Equation 23 with the boundary conditions represented by Equations 

24, 25 and 26 indicate cyclical a r r ay  of the form shown. 

t ime, t 
> 

Outer T1,n 

T2,n 
Surface 

. . .  I '  

T1, 1 T1,2 . .  . TI,  n T1 ,Nl  = T 1 , l  T1,2 

T2,l T2,2 . . .  T2, n T2,N1 = T 2 , 1  T2,2 

. . .  

Inner TMl,n  
Surface 

. . .  I '  

TMl , l  TM1,2 * * * TMl,n TM1,N1 = T M l , l  TMl,  2 

t 
Distance 

where the m uniform space intervals a r e  of magnitude h, i. e . ,  mh = I 

And the n uniform t ime intervals are of magnitude k, i. e . ,  nk = T and the 

TI, j are known f rom repeated application of Equation 3 .  F o r  convenience, 

the end points m t l  and n t l  were given the symbols M1 and Nl respectively. 

Diffe r e  nce s 

Examination of the mat r ix  indicates that the unknown temperatures  

a r e  comprised of Ti, j ;  i = 2 t o  M1 and j = 1 to n, i. e . ,  m X n unknowns. 

These unknowns a r e  solved by expressing Equations 2 3  and 25 in t e r m s  of 

the a r r a y  temperatures ,  i. e . ,  by differencing Equations 23 and 25. 

Equation 25 may only be expressed by backward differences, and in the 

s imples t  form this gives 

9 



j = 1 to  n, i. e . ,  n equations. 

However, Equation 23 may be expressed in  cent ra l  difference 

f o r m  (usually the most  accura te )  and this yields 

T i t i ,  j Ti-1, j - 2 Ti, j 1 (Ti,  j t l  - Ti, j-1) - -  - 
hZ Y 2 k  

i = 2 to  m and j = 1 to n, i. e . ,  (m-1) n equations. 

Equations 27 and 28 may now be applied a t  n t (m- l )n  points, i. e., 

m x n points. Thus, the problem is solvable. 

Consequently, 

Numerical Solution 

To solve Equations 27 and 28 numerically, it is prudent to  

a r range  them into a more  convenient form thus 

and for  j = 1 t o n  

Application of the conventional i teration procedure then allows 

the equations to  be solved numerically. 

procedure may be applied, a f i r s t  guess is necessary.  

drawn up by assuming that the conduction through the insulation was 

l inear  with respect  to  distance which resul ts  in the following equation: 

However before the i teration 

This guess was 

10 



t The instantaneous heat flux per unit a rea ,  Gu, j, is then immediately 

solved by application of 

Integration of the Heat Flux 

As mentioned previously, the object is to  calculate the heat flowing 

through a triangle between any two times t l  and t2 (which in practice are con- 

fined to  multiples of the t ime s tep k, say a l k  and azk where a1 = (tl - to) /k  

and a 2  = ( t z  - t,)/k) 

t 2  

qA = A 1 4u, j dt 

t l  

However, this integral  may be spli t  into two par t s  thus 

t 2  t l  

q A = A S i l U , j  dt - A 1 4u, j  dt . 
to 

t 

Hence if  the integral  qu = &, dt may be evaluated, then the problem 

is solvable. 

cyclical  nature of the problem. Thus, if the integral  q,, to 5 t 2 to t T 

and ( t  - t,)/a may be evaluated, then any other interval p grea te r  than T 

may be evaluated as follows: 

The integral  qu itself may be  reduced fur ther  because of the 

s =s  
where 

I 1  



to  i- t 

The final evaluation of q = A s  qu, jdt  was accomplished by the A 

to 
t rapezium rule thus 

t,tt a 

12 



FORTRAN PROGRAM 

The program first reads a l l  input data and then calculates the 

tempera ture  distribution on the outer surface for  one period. 

program uses  Equations 1 through 20 inclusively to calculate the 

temperature  distribution. 

distribution is calculated f rom the outside wall temperatures  using 

Equation 31. 

The 

Next the initial guess for  the temperature  

At this point, the program begins an  i terative procedure using 

Equations 29 and 30 to  solve the matrix for  the periodic temperature  

distribution. 

en t i re  matrix is unchanged for  two successive i terations.  

The program has reached the desired solution when the 

The program next uses  Equation 22 of the theory to  calculate the 

heat flux into the cabin for  a l l  points in  the period. And finally, the pro-  

g r a m  calculates the total  heat flux into the cabin, using Equation 34, and 

pr ints  out the mat r ix  of the temperature distribution. 

13 



CONCLUSIONS 

The theory and program outlined in this report  will calculate the 

periodic heat flux into the heat source o r  sink chosen and a l so  the space 

time distribution of temperature  through the insulation. 

Extending the analysis to  include temperature  dependent thermal  

conductivities and temperature  dependent heat t ransfer  coefficients could 

eas i ly  be  accomplished if required. 

14 
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APPENDIX A 

PROGRAM INPUTS 

The f i r s t  61 input cards  a r e  for  a table o f f  versus  TpZo. 

The format  of these cards  i s  2F10. 0. 

second is  Tp,o. 

The first value is f and the 

The next two cards  contain 

CARD 1 

1. The thickness of cab wall ( L )  
2. The s tep s ize  on 6 (H)  
3. The s tep size on t ( K )  
4. The period (TAU) 
5. The cab temperature (TC)  

CARD 2 

1, Heat t ransfer  coefficient (HTC) 
2. The conductivity (KBAR) 
3. The density (RHO) 
4. The specific heat ( C P )  

The fo rma t  for  these ca rds  is 5F15.0 

The next three cards  contain 

CARD 1 

1. Lambda, degrees  
2. Beta, degrees 
3 .  C, degrees 
4. Theta, degrees 
5. G, Btu/hr  ft2 
6 .  e (dimensionless) 
7. am (dimensionless) 

CARD 2 

1. cys (dimensionless) 
2. r (dimensionless) 
3 .  
4. 

X coordinate of point 1 
Y coordinate of point 1 

ft 
f t  
h r  
h r  
OR 

Btu/ftz h r  OR 
Btu/ft h r  OR 
lb/ft3 

LAMD 
BETAD 
CD 
THED 
G 
EIOTl 
EIOTM 

EIOTS 
RMTS 
X X I ,  in 
Y Y 1 ,  in  

16 



CARD 2 (Continued) 

5. 
6 .  
7. 

Z coordinate of point 1 
X coordinate of point 2 
Y coordinate of point 2 

CARD 3 

1. 
2. 
3. 
4. 

Z coordinate of point 2 
X coordinate of point 3 
Y coordinate of point 3 
Z coordinate of point 3 

The format  for these cards  is 7F10. 0. 

The next ca rd  contains 

1. Sigma, Btu/fl? hr OR4 
2. 
3. 

Number of steps on X plus 1 
Number of steps on t plus 1 

ZZ1, in 
XX2, in 
YY2, in 

2 2 2 ,  in 
XX3,  in 
YY3, in 
2 2 3 ,  in 

The format  of this ca rd  is E14.8, 215. 

The next ca rd  contains 

1. The start ing point for calculation 
of QQ (MM1) 

2. The stopping point for calculation 
of QQ (MM2) 

17 



APPENDIX B 

LIST OF FORTRAN PROGRAM 
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. 
L I S T  OF FORTRAN PROGRAM 

FOR MOLAB STUDY 

C D I M E N S I O N  T ( 2 1 r 1 0 0 1 1  

DIMENSION T ( 2 1 , l O l )  

DIMENSION F A R ( 6 l l , T B E T ( 6 L )  

R E A L  L * K * K B A R , L K H  

REAL L A M R ~ L A M D I L A M O , L A M S  

Pi1 = 3.1415926536 

DO 70 X I  = 1,61 

70 R E A D  ( 5 ~ 6 6 6 ) F A R ( I I ) , T B E f ( I I )  

666 F O R M A T I 2 F 1 0 . 0 )  

R E A D ( S 1 1 4 l N C A S E  

14 FORMAT t I5 1 

DO 11 K A S E = l , N C A S E  

C R E A D (  5,10)L,H, K,TAU,TC ,HTC, KBAR,RHO,CP 

REAO(S,~O)C,HIKITAU,~CIHTC,HTC, KBARfiRHQ,CP,TOL 

10 F O R M A T ( S F 1 5 - 0 1  

R E A 0  ( 5 , 6 7 ~ ~ L A M D t B E T A D t C D ~ ~ ~ € D ~  G ~ E I O f l ~ E X O T ~ ~ E X O T S ~ R M T S , X X L r  

1 Y Y L , Z Z L , X X 2 , Y Y 2 , 2 Z 2 , X X 3 , Y Y 3 , Z Z 3  

19 
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L I S T  OF FORTRAN PROGRAM 

. 
FOR MOLAB STUDY 

676 F O R M A T ( 7 F l O . O  1 

R E A D ( 5 , 6 7 7 ) S I G , H l , N l  

677 F O R M A T ( E 1 4 . 8 , 2 1 5 )  

R E k D t 5 , 8 8 ) M M l r M M 2  

88 F O R M A T 1 2 1 5 1  

LKH=KBAR/HTC 

GAM = KBAR/RHO/CP 

N = TAU/K 

M = L/H 

C W R I T E ~ 6 ~ 2 7 5 ) N ~ M , N l ~ M l  

W R I T E 1 6 , 2 7 5 ) N , M , N l , M L  ,KBAR,TOL 

C 275 F O R H A ~ ( L H ~ ~ ~ O X I ~ H N  = i I 6 , 4 X , 3 H P l  = r I 6 , 4 X , 4 H N l  = ~ 1 6 , 4 X , 4 H H l  = , 1 6 / / / / )  

275 F O R M A T ( l H l , l O X t 3 H N  = r I 6 , 4 X , 3 H M  = i I 6 , 4 X , 4 H N l  = , 1 6 , 4 X , 4 H M l  ~ 9 1 6 ,  

1 5 X r 4 H K B A R  eE18.8,3X, 3HTOL 9 €18.8) 

RAD = PI/180,0 

LAMR = LAHD*RAD 

BETAR = BETAD+RAD 

CR A D 4  D+RAO 

L A M 0  = ( P I / Z - O ) - C R A D  

THER = THED*RAD 
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L I S T  OF FORTRAN PROGRAM 

FOR MOCAB STUDY 

xx1=xx1 /12 .0  

X X 2 = X X 2 / 1 2 . 0  

x x3=x x 3/ 12 . 0 

Y Y L = Y Y l  /L2.0 

Y Y 2 = Y Y 2  /12.0 

Y Y 3 = Y Y 3  /12.0 

Z Z l = Z Z l  /12.0 

222=z22 /12.0 

ZZ3=223 /12.0 

XNX = t Y Y 2 - Y Y l I * ( Z Z 3 - Z Z l )  - ( Y Y 3 - Y Y l ) * ~ Z Z 2 - 2 2 1 )  

XNY = ( Z Z 2 - Z Z 1 ) * ( X X 3 - X X L ) - ( Z Z 3 ° Z Z l ) ~ ( X X 2 - X X L )  

XNL= t X X 2 - X X 1 )  * ( Y Y 3 - Y Y  11 - f X X 3 - X X l ) * ( Y Y 2 - Y Y l )  

ABAR = S Q R T ( X N X * X N X  + XNY+XNY + X N Z * X N Z )  

A = 0.5*ABAR 

XLN = XNX/ABAR 

XMN = XNY/ABAR 

XNN = X N Z / A B A R  

W R I T E ~ 6 ~ 1 0 1 ) R A D ~ L A M R ~ ~ € l A R ~ C R A D ~ ~ A M O ~ ~ H E R ~ X X l ~ X X 2 ~ X X 3 ~ ~ Y l ~ Y Y Z ~ Y Y 3 ~  

1 Z Z l ~ L Z 2 ~ Z Z 3 , X N X , X N Y ~ X N Z ~ A 8 A ~ t A , X L " , X N N  

101 F O K M A T ( 1 H  9 5 X 1 6 E 2 0 . 8 )  
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~~ 

L I S T  OF FORTRAN PROGRAM 

. 
FOR MOLAB STUDY 

C 

C I N P U T  OR CALCULATE T I M l r N 1 )  NOW 

C 

DO 300 J = L t N 1  

X J  = J-1 

LAMS = LAHO - 2 o O * P I * X J * K / T A U  

DELLAM- LAMR-LAMS 

X L S  = - ( C O S ~ T H E R ~ * S I N ~ D E L L A M ~ + S I N ~ B E T A R ) * S I N ~ l H E R ~ * C O S ~ D E L L A ~ ~ ~  

X M S  =, S f N ( T H E R ) * S I N ( D E L L A M )  - SIN(BETAR)*COS(THERI*COS(DELLAM) 
XNS = C O S ( B E T A R ) * C O S ( D E L L A M )  

COSALP = X L S * X L N  + XMS*XMN t XNS*XNN 

FBAR=LOoO+DELLAM/(2oO*~I) 

I F 6  = FBAR 

F61 = IF6 

FBAR = FBAR - f-61 

C 

C HEGIN I N T E R P O L A T I O N  R O U T I N E  HERE 

C 

DO 7 1  K T  = 1960 

K T  1 = KT 
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~~ 

L I S T  OF FORTRAN PROGRAM 

FOR MOLAB STUDY 

I F f F 6 A R , E Q I f A R ( K T 1 ) )  GO TO 72 

K T 2  = K T  + 1 

I F ~ F B A R ~ G T ~ f A R ( K T 1 ) . A N D I F B A R . L T . F A R o L T ~ f A R ~ K T 2 ) ~ G O  TO 73 

7 1  C O N T I N U E  

W R I T E ( 6 9 6 6 5 )  

665 F O R M A T ( 1 H L r l 5 X ~ 2 7 H I N T E R P O L A T l Q N  NOT POSSIBLE / l H L )  

72 T I N T  = T B E T ( K T 1 )  

GO TO 77 

7 3  OffFO = F A R ( K T 2 ) - F A R ( K T A )  

D1FFl = FBAR - F A R t K T 1 )  

D I F T  = T B E T ( K T Z ) - T B E T I  KT1  1 

D I F T A  = D I F T + D I F f 1 / D I F F O  

T I N T  = T B E T ( K T 1 )  + O I F T l  

77 C O N T I N U E  

C 

C END O f  I N T E R P O L A T I O N  R O U T I N E  

C 

TMBAR = T I N T * S O R T ( S Q R T ( S a R T ( C O S ( B E T A R ) ) ) )  

TM = 1.8*TMBAR 

EM I S= S I G * TM.* * 4 
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L I S T  OF FORTRAN PROGRAM 

FOR MOLAB STUOY 

CL = E I O T S + G * C O S A L P  

C 2  = E I O T S + R M T S  G XNS 

C3 = EIOTH*EMIS 

C 4  = l-O/(EIOTl*SXG) 

I f  ( XNS GE- 0 -  0 -  AND. COSALPoL l o  0.0 1 C 1 = 0 0 

IF (XNS.GJoO.O)GO TO 700 

CL = 0.0 

c 2  = 0.0 

700 C O N T I N U E  

TEMP = t I l .O-XNN)*(C3+C2)/2-O)+CL 

T(lrJ)=SQRT(SQRT(C4+TEMP)) 

300 C O N T I N U E  

W R I T E ( 6 ,  1011 ( T (  l , J ) ~ J = l v N L )  

DO 3000 I = 2 , M l  

x x  = 1-1 

XX = X X + H  

00 3000 J = 1 , N l  

f X 1  = T ( 1 , J )  

T X 2  = 1.0 - H T C * X X / ( H T C * L + K B A R )  

T X 3  = HTC * T C * X X / ( H T C + L + K B A R )  
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L I S T  OF FORTRAN PROGRAM 

FOR MOLAB STUOY 

T ( I , J ) ~ T X l * T X Z + T X 3  

3000 C O N T I N U E  

C 

C END OF I N P U T  OR C A L C U L A T I O N  OF T ( H L q N L )  

C 

I T  = 1 

X I P T  = M 1  

I P T  = ( X I P T / 6 . 0 ) + 1 . 0  

I P T  = 5 6 / ( 2 + I P T )  

I X  I T= [ M l - 1 )  (N1-1) 

I I K T  = N1-1 

64 I C T = O  

I I C T  = 0 

DO 2 1  J = 2 e N L  

J1M = J-1 

J l P  = J + l  

DO 21 I = 2 r M 1  

I 1 P  = I t 1  

I L M  = 1-1 

I F ( I o E Q o H 1 ) G O  TO 30 
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L I S T  OF FORTRAN PROGRAM 

FOR MOLAB STUDY 

I F ( J o E Q o N l ) J l P = 2  

J I J  t O.S~(T(IlPt3)+T(IlH,J)-H*H/(2oO~K*GAM)* 

1 ( T  t I t  J L P ) - T (  I J l M )  ) 1 

GO TO 22 

30 I1 = 1-1 

T I J  = (TC*H + T ( I I t J ) * L K H l / ( L K H + H )  

C 22 I F ( A B S f T I J ~ l ~ I ~ J ~ ~ o L E ~ O o O O O l ~ I C T  = i C T + 1  

22 I F ( A B S { T I J - T ( I I J ) ) ~ L E , T O L  I I C T  = I C T + l  

C I F ( I o E 4 o M l o A N D o A B S ( T I J - T ( I ~ J ) ) o L € o  0 0 0 0 0 1 ) I I C T = l I C T + 1  

I F ( I o E ~ ~ M l o A N D ~ A B S ( T I J - T ( I , J ) ) , L E ,  TOL ) I I C T = I I C T + L  

T 4  I t J l = T I  J 

I F ( J o E ~ o N l ) T ( I , L ) = J ( I I J I  

2 1  CONTINUE 

W R l T E ~ 6 ~ 3 0 3 7 ~ I T t i I C T t I I X T t I C T , L X I T  

3037 FORMAT(1H ,25X,51103 

1010 CONTINUE 

I F I I C T . E Q . I X I T I G 0  TO 1012 

I T = I T + l  

GO TO 64 

1012 CONTINUE 
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L I S T  OF FORTRAN PROGRAM 

. 
FOR MOLAB STUOY 

0 IMENS ION QDOT ( 6 )  

WRITE(6,99)IT 

99 FORMAT(lHl95OX,4HIT =*I71 

WR I T € (  6 9 8 9  1 

89 fORMAT(lHO~SOX~19HTHESE ARE THE QDOTS) 

I = O  

oa a i  J = L N L  

I = l + 1  

QDOT(1) = HTC*A*(TIMl9J)-TC) 

I F ( I ,NE- 6 -  AND, J .NE ON1 1 GO TO 81 

W R I T E ~ 6 ~ 1 0 l ~ ~ Q D O T ~ I I ~ ~ I I ~ l ~ ~ ~  

I =, 0 

8 1  CONTINUE 

WRITE (6r99)IT 

IPRT = 0 

J = l  

WRITE (6910013 

100 FOKMAT(LHO,SOX,3HJ = 9 x 7 )  

WRITE (6rlOL)(T(I,J)rI=l~Ml) 

IPHT = IPRT+1 
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L I S T  OF FORTRAN PROGRAM 

FOR MOLAB STUDY 

C 

C 

AKHTC2 = A*K*HTC/ZoO 

QQ=O.O 

HM2 MM2-1 

DO 82  J = MMlpMM2 

J l = J + l  

I F ( J ~ E Q o M F 4 2 ) J l = M H l + l  

8 2  Q Q  = T ( M l , J ) + T ( M l , J l )  - 2-0+TC + QQ 

QQ = ASK HTC/2.0*QQ 

P Q = I T t M l r J I + T ~ M l ~ J l ) - Z ~ O * ~ C ) ~ A K H T C 2  + QQ 

WRITE f6 r100)  J l  

W R I T E I 6 , l O l )  ( T f  I r J l ) t  I=A,Ml),QQ 

IPHT=IPRT+L 

I F ( M O D ( I P R T ~ I P T ) ~ E Q ~ O ) W R I T E ( 6 , 9 9 ) I T  

8 2  CONTINUE 

WRITE ( 6 ,  87 )QQ 

87 F O H M A T ( ~ H L / / / / / S S X I ~ H P ~  =rEZOo8///////////////50X, 

1 2 2 H * * * * *  END OF JOB * * + * * / l H l )  

87 FOKMAT(lHL/////S5X,4HQQ = , € 2 0 - 8 / / / / / / / / / / / / / / / 5 0 X ,  

123H**** *  END OF C A S E  * * * * * / / / / I  

1 1  CONTINUE 

STOP 

END 
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b APPENDIX C - 
LUNAR SURFACE EQUATORIAL TEMPERATURE HISTORY 

Lunar Surface Equator ia l  
Tempera ture  (OK) 

Phase  Frac t ion  

(Noon) , 0 0 0  
. 016 
. 030 
. 0 5 0  
. 060 
.083 
. l o o  
. 1016 
,1030 
.1500 
. 1600 
. 1830 
.2000 
,2160 
.2300 
.2500 
.2600 
.2830 
.3000 
. 3160 
. 3300 
.3500 
.3600 
.3830 
.4000 
.4160 
.4300 
.4500 
.4600 
.4830 

(Midnight) . 5000 
. 5160 
.5300 
.5500 
. 5600 
.5830 
.6000 
.6160 
.6300 

39 0 
389 
387 
383. 5 
380. 0 
376.0 
371. 0 
361.0 
353.0 
341.0 
330.0 
313.0 
292.0 
266.0 
227.0 
145.0 
119.0 
116.0 
112.0 
110.0 
109. 0 
105.0 
103.0 
101.0 
100.0 
99.0 
98. 0 
97.0 
96.0 
95. 0 
94.0 
93. 0 
92. 0 
92. 0 
92. 0 
91. 0 
91. 0 
91. 0 
90. 0 
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Phase  Fract ion Lunar Surface Equatorial  
TemDerature I O K \  

,6500 
.6600 
,6830 
.7000 
.7160 
.7300 
.7500 
.7600 
.7830 
-8000 
.8160 
.8300 
.8500 
.8600 
.8830 
.9000 
.9160 
.9300 
.9500 
.9600 
.9830 

(Following Noon) 1 .  0000 

90. 0 
89. 0 
89. 0 
88. 0 
88. 0 
87. 0 
87. 0 

214.0 
259. 0 
291.0 
312.0 
330.0 
342.0 
353.0 
361.0 
370.0 
377.0 
380.0 
385.0 
388.0 
390.0 
390.0 
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